5 teorias malucas para entender a física quântica

As leis da física macroscópica são capazes de descrever o estado de movimento dos corpos que vemos ao nosso redor. Agora, quando entramos na escala dos átomos e moléculas, elas se tornam obsoletas. Aí surge a física quântica, onde as leis não são mais determinísticas.

Nela, as medidas são expressadas em probabilidades, já que não é possível predizer com exatidão onde um objeto está, ou mesmo sua velocidade. Mas essa impossibilidade de aferir não acontece por falta de aparelhos, desconhecimento ou algo do gênero, mas à própria natureza da física quântica.

Para dar dimensão de sua profundidade, listamos 5 teorias daquelas que parecem malucas, mas que nos ajudam a entender melhor esse ramo tão complexo da Ciência.

1. Objetos podem estar em dois lugares ao mesmo tempo

(Fonte: Pexels)(Fonte: Pexels)

Conhecida como dualidade onda-partícula, essa propriedade da natureza vale para partículas e para ondas. Essa teoria surgiu como um avanço muito significativo da física quântica. Segundo ela, as partículas são uma espécie de “campo de matéria”, já que não é possível determinar com absoluta precisão a posição de uma partícula quântica.

Recorda-se daquele famoso experimento chamado de gato de Schrödinger? É essa ideia da dualidade onda-partícula que está por trás do experimento. Ou seja, não podemos determinar informações sobre um sistema quântico sem observá-lo. Até que isso ocorra, um elétron, por exemplo, pode estar “aqui” e “lá” simultaneamente.

2. Ajudou-nos a conhecer as estrelas

(Fonte: Pexels)(Fonte: Pexels)

A humanidade sabe do que estrelas são feitas porque, quando dividimos sua luz em um espectro parecido com o arco-íris, encontramos cores que estão faltando. Isso permite que descubramos o que constitui o Sol e outras estrelas. Quem definiu essa possibilidade foi o físico Niels Bohr.

A cor de uma estrela vai depender diretamente de sua temperatura. O espectro das estrelas se apresenta como uma faixa luminosa contínua que contém todas as cores do arco-íris interrompidas por raias escuras. É justamente a partir destas raias escuras que podemos descobrir a composição química das camadas superficiais do astro. Ouvi um viva à física quântica?

3. Sabemos por que o Sol brilha por sua causa

(Fonte: Pexels)(Fonte: Pexels)

Denominada barreira de Coulomb, a fusão nuclear é o processo em que os núcleos de dois ou mais átomos são fundidos para formar outro maior. Na Terra, isso não acontece de maneira natural, mas nos corpos celestes, como o Sol, onde há uma quantidade enorme de energia, isso ocorre com relativa frequência. Na prática, se a fusão não ocorresse no Sol, não haveria luz solar.

Isso porque o Astro-rei produz sua energia por meio deste processo, transformando átomos de hidrogênio em átomos de hélio. Como a massa resultante não é a soma da massa dos hidrogênios, o déficit é compensado pela liberação de energia, que nada mais é que aquele brilho bonito de um belo dia de praia.

4. Ajudou a descobrir o que impede o colapso de estrelas mortas

(Fonte: Reprodução/Space)(Fonte: Reprodução/Space)

A ciência já sabe que, eventualmente, a fusão nuclear no Sol vai parar e ele vai morrer, ou seja, entrará em colapso. Há uma regra da física quântica, conhecida como Princípio de Exclusão de Pauli, que demonstra que esse colapso não será eterno.

À medida que a gravidade tenta fazer com que elétrons existam no mesmo estado quântico, uma resistência ocorre, o colapso é interrompido e um novo objeto conhecido como Anã Branca se forma.

Esse é o nome dado a um remanescente estelar. Se sua massa cresce, ela desencadeia uma onda de fusão que a despedaça, conhecida como supernova. Ela é brilhante o suficiente para eclipsar uma galáxia inteira.

5. Explica a estrutura em grande escala do universo

(Fonte: Reprodução/Space)(Fonte: Reprodução/Space)

A Teoria do Big Bang, segundo a qual o Universo teria surgido de uma grande explosão cósmica, que resultou na criação do espaço e do tempo, é a melhor hipótese sobre a origem de tudo. Porém, sua parte teórica continha algumas imperfeições corrigidas por Alan Guth, em 1981, com o que ele chamou de “inflação”.

De acordo com essa “inflação”, o Universo, em seu início, passou por uma fase de grande crescimento produzido por uma densidade de energia do vácuo negativa ou uma força gravitacional repulsiva. E foi justamente essa “inflação” que fez com que o Universo crescesse rapidamente antes que as flutuações quânticas desaparecessem.

More in Fatos&Fatos.com

Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem?

Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet.

Copyright © 2020 powered by fatos&fatos.com.